
Evaluating Representation Learning of Code Changes for
Predicting Patch Correctness in Program Repair

Haoye Tian
haoye.tian@uni.lu

University of Luxembourg

Luxembourg

Kui Liu∗

kui.liu@nuaa.edu.cn

Nanjing University of Aeronautics

and Astronautics

China

Abdoul Kader Kaboré
Anil Koyuncu

{abdoulkader.kabore,anil.koyuncu}@uni.lu

University of Luxembourg

Luxembourg

Li Li
li.li@monash.edu

Monash University

Australia

Jacques Klein
jacques.klein@uni.lu

University of Luxembourg

Luxembourg

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

University of Luxembourg

Luxembourg

ABSTRACT

A large body of the literature of automated program repair de-

velops approaches where patches are generated to be validated

against an oracle (e.g., a test suite). Because such an oracle can be

imperfect, the generated patches, although validated by the oracle,

may actually be incorrect. While the state of the art explore re-

search directions that require dynamic information or that rely on

manually-crafted heuristics, we study the benefit of learning code

representations in order to learn deep features that may encode

the properties of patch correctness. Our empirical work mainly

investigates different representation learning approaches for code

changes to derive embeddings that are amenable to similarity com-

putations. We report on findings based on embeddings produced

by pre-trained and re-trained neural networks. Experimental re-

sults demonstrate the potential of embeddings to empower learning

algorithms in reasoning about patch correctness: a machine learn-

ing predictor with BERT transformer-based embeddings associated

with logistic regression yielded an AUC value of about 0.8 in the

prediction of patch correctness on a deduplicated dataset of 1000 la-

beled patches. Our investigations show that learned representations

can lead to reasonable performance when comparing against the

state-of-the-art, PATCH-SIM, which relies on dynamic information.

These representations may further be complementary to features

that were carefully (manually) engineered in the literature.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416532

KEYWORDS

Program Repair, Patch Correctness, Distributed Representation

Learning, Machine learning, Embeddings

ACM Reference Format:

Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques

Klein, and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learn-

ing of Code Changes for Predicting Patch Correctness in Program Repair. In

35th IEEE/ACM International Conference on Automated Software Engineering

(ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416532

1 INTRODUCTION

Automation in software engineering has recently reached new

heights with the promising results recorded in the research di-

rection of automated program repair (APR) [27, 42]. While a few

techniques try to model program semantics and synthesize execu-

tion constraints towards producing quality patches, they often fail

to scale to large programs. Instead, the large majority of research

contributions [43] explore search-based approaches where patch

candidates are generated and then validated against an oracle.

In the absence of strong program specifications, test suites repre-

sent affordable approximations that are widely used as the oracle in

APR. In their seminal approach to test-based APR,Weimer et al. [55]

considered that a patch is acceptable as soon as it makes the pro-

gram pass all test cases in the test suite. Since then, a number of

studies [46, 49] have explored the overfitting problem in patch vali-

dation: a given patch is synthesized to pass a test suite and yet is

incorrect with respect to the intended program specification. Since

limited test suites only weakly approximate program specifications,

a patched program can indeed satisfy the requirements encoded in

the test cases, and present a behavior outside of those tests that are

significantly different from the behavior initially expected by the

developer.

Overfitting patches constitute a key challenge in generate-and-

validate APR approaches. Recent evaluation campaigns [16, 20, 21,

32–35, 48, 52, 56] on APR systems are stressing on the importance

of estimating the correctness ratio among the valid patches that

can be found. To improve this ratio, researchers are investigating

several research directions. We categorize them in three main axes

that focus on actions before, during or after patch generation:

981

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

• test-suite augmentation: Yang et al. [62] proposed to generate

better test cases to enhance the validation of patches, while Xin

and Reiss [58] opted for increasing test inputs.

• post-processing of generated patches: Long and Rinard [37] studied

some heuristics to discard patches that are likely overfitting.

• curation of repair operators: approaches such as CapGen [56] suc-

cessfully demonstrated that carefully-designed (e.g., fine-grained

fix ingredients) repair operators can lead to more correct patches.

Our work is related to the latter thrust. So far, the state-of-the-art

works targeting the identification of patch correctness are mainly

implemented based on computing the similarity of test case execu-

tion traces [59]. Ye et al. [63] followed up by presenting preliminary

results suggesting that statically-extracted code features at the syn-

tax level could be used to predict overfitting patches. While such

an approach is appealing, the feature engineering effort can be

huge when researchers target generalizable approaches. To cope

with this problem, Csuvik et al. [8] have proposed a preliminary

small-scale study on the use of embeddings: leveraging pre-trained

natural language sentence embedding models, they claim to have

been able to filter out 45% incorrect patches generated for 40 bugs

from the QuixBugs dataset [64].

This paper. Embeddings have been successfully applied to vari-

ous prediction tasks in software engineering research [1, 29, 50, 51].

For patch correctness prediction, the literature does not yet pro-

vide extensive experimental results to guide future research. Our

work fills this gap. We investigate in this paper the feasibility of

leveraging advances in deep representation learning to produce

embeddings that are amenable to reasoning about correctness.

� We investigate different representation learning models adapted

to natural language tokens and source code tokens that are more

specialized to code changes. Our study considers both pre-trained

models and the retraining of models.

� We empirically investigate whether, with learned representations,

the hypothesis of minimal changes incurred by correct patches

remains valid: experiments are performed to check the statistical

difference between similarity scores yielded by correct patches

and those yielded by incorrect patches.

� We run exploratory experiments assessing the possibility to select

cutoff similarity scores between learned representations of buggy

code and patched code fragments for heuristically filtering out

incorrect patches.

� Finally, we investigate the discriminative power of deep learned

features in a classification training pipeline aimed at learning to

predict patch correctness.

2 BACKGROUND

Our work deals with various concepts and techniques from the

fields of program repair and machine learning. We present the

relevant details in this section to facilitate readers’ understanding

of our study design and the scope of our experiments.

2.1 Patch Plausibility and Correctness

Defining patch correctness is a non-trivial challenge in automated

program repair. Until the release of empirical investigations by

Smith et al. [49], actual correctness (w.r.t. program behavior in-

tended by developers) was seldom used as a performance criterion

of patch generation systems. Instead, experimental results were

focused on the number of patches that make the program pass all

test cases. Such patches are actually only plausible. Qi et al. [46]

demonstrated in their study that an overwhelming majority of

plausible patches generated by GenProg [26], RSRepair [45] and

AE [54]) are overfitting the test suite while actually being incorrect.

To improve the probability of program repair systems to generate

correct patches, researchers have mainly invested in strengthening

the validation oracle (i.e., the test suites). Opad [62], DiffTGen [58],

UnsatGuided [66], PATCH-SIM/TEST-SIM [59] generate new test

inputs that trigger behavior cases which are not addressed by APR-

generated patches.

More recent works [8, 63] are starting to investigate static fea-

tures and heuristics (or machine learning) to build predictive mod-

els of patch correctness. Ye et al. [63] presented the ODS approach

which relates to our study since it investigated machine learning

with static features extracted from Java program patches. Their

approach however builds on carefully hand-crafted features, which

may not generalize to other programming languages or even to

varied datasets. The study of Csuvik et al. [8] is also closely re-

lated to ours since it explores BERT embeddings to define similarity

thresholds. Their work however remains preliminary (it does not

investigate the discriminative power of features) and has been per-

formed at a very small scale (single pre-trainedmodel on 40 one-line

bugs from simple programs).

2.2 Distributed Representation Learning

Learning distributed representations have been widely used to ad-

vance several machine learning tasks. In particular, in the field

of Natural Language Processing embedding techniques such as

Word2Vec [22], Doc2Vec [22] and BERT [9] have been success-

fully applied for different semantics-related tasks. By building on

the hypothesis of code naturalness [2, 12], a number of software

engineering research works have also leveraged the aforemen-

tioned approaches for learning distributed representations of code.

Alon et al. [3] have then proposed code2vec, an embedding tech-

nique that explores AST paths to take into account structural in-

formation in code. More recently, Hoang et al. [13] have proposed

CC2Vec, which further specializes to code changes.

Our work explores different techniques across the spectrum of

distributed representation learning. We therefore consider four

variants from the seemingly-least specialized to code (i.e., Doc2Vec)

to the state of the art for code change representation (i.e., CC2Vec).

2.2.1 Doc2Vec. Doc2Vec [22] is an unsupervised frameworkmostly

used to learn continuous distributed vector representations of sen-

tences, paragraphs and documents, regardless of their lengths. It

works on the intuition, inspired by the method of learning word vec-

tors [41], that the document representation should be good enough

to predict the words in the document Doc2Vec has been applied in

various software engineering tasks. For example, Wei and Li [53]

leveraged Doc2Vec to exploit deep lexical and syntactical features

for software functional clone detection. Ndichu et al. [44] employed

Doc2Vec to learn code structure representation at AST level to

predict JavaScript-based attacks.

2.2.2 BERT. BERT [9] is a language representation model that

has been introduced by an AI language team in Google. BERT is

982

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

devoted to pre-train deep bidirectional representations from unla-

belled texts. Then a pre-trained BERT model can be fine-tuned to

accomplish various natural language processing tasks such as ques-

tion answering or language inference. Zhou et al. [67] employed

a BERT pre-trained model to extract deep semantic features from

code name information of programs in order to perform code rec-

ommendation. Yu et al. [65] even leveraged BERT on binary code

to identify similar binaries.

2.2.3 code2vec. code2vec [3] is an attention-based neural code

embedding model developed to represent code fragments as con-

tinuous distributed vectors, by training on AST paths and code

tokens. Its embeddings have notably been used to predict the se-

mantic properties of code fragments [3], in order, for instance, to

predict method names. In a recent work, however, Kang et al. [18]

reported an empirical study, which highlighted that the yielded to-

ken code2vec embeddings may not generalize to other code-related

tasks such as code comment generation, code authorship identifica-

tion or code clone detection. code2vec remains however the state of

the art in code embeddings: Compton et al. [7] recently leveraged

code2vec to embed Java classes and learn code structures for the

task of variable naming obfuscation.

2.2.4 CC2Vec. CC2Vec [13] is a specialized hierarchical attention

neural network model which learns vector representations of code

changes (i.e., patches) guided by the associated commit messages

(which is used as a semantic representation of the patch). As the

authors demonstrated in their in large empirical evaluation, CC2Vec

presents promising performance on commit message generation,

bug fixing patch identification, and just-in-time defect prediction.

3 STUDY DESIGN

First, we overview the research questions that we investigate. Then

we present the datasets that are leveraged to answer these research

questions. Finally, we discuss the actual training of (or use of pre-

trained) models for embedding the code changes.

3.1 Research Questions

RQ1: Do different representation learning models yield compara-

ble distributions of similarity values between buggy code and

patched code? A widespread hypothesis in program repair is

that bug fixing generally induceminimal changes [5, 6, 15, 16,

31, 33, 34, 40, 55, 56, 60]. We propose to investigate whether

embeddings can be a reliable means for assessing the ex-

tent of changes through computation of cosine similarity

between vector representations.

RQ2: To what extent similarity distributions can be generalized

for inferring a cutoff value to filter out incorrect patches? Fol-

lowing up on RQ1, We propose in this research question to

experiment ranking patches based on cosine similarity of

their vector representations, and rely on naively-defined sim-

ilarity thresholds to decide on filtering of incorrect patches.

RQ3: Can we learn to predict patch correctness by training classifiers

with code embeddings input? We investigate whether deep

learned features are indeed relevant for building machine

learning predictors for patch correctness.

3.2 Datasets

We collect patch datasets by building on previous efforts in the

community. An initial dataset of correct patches is collected by

using five literature benchmarks, namely Bugs.jar [47], Bears [38],

Defects4J [17], QuixBugs [28] and ManySStuBs4J [19]. These are

developer patches as committed in open source project repositories.

We also consider patches generated by APR tools integrated

into the RepairThemAll framework. We use all patch samples

released by Durieux et al. [10]. This only includes sample patches

that make the programs pass all test cases. They are thus plausible.

However, no validation information on correctness was given. In

this work, we proceed to manually validate the generated patches,

among which we identified 900 correct patches. The correctness

validation follows the criteria defined by Liu et al. [36].

In a recent study on the efficiency of program repair, Liu et al. [36]

released a labeled dataset of patches generated by 16 APR systems

for the Defects4J bugs.We consider this dataset as well as the labeled

dataset that was used to evaluate the PATCH-SIM [59] approach.

Overall, Table 1 summarizes the data sets that we used for our

experiments. Each experiment in Section 4 has specific require-

ments on the data (e.g., large patch sets for training models, labeled

datasets for benchmarking classifiers, etc.). For each experiment,

we will recall which sub-dataset has been leveraged and why.

Table 1: Datasets of Java patches used in our experiments.

Subjects

contains

incorrect

patches

contains

correct

patches

labelled

dataset
Patches

Bears [38] No Yes - 251

Bugs.jar [47] No Yes - 1,158

Defects4J [17]† No Yes - 864

ManySStubBs4J [19] No Yes - 34,051

QuixBugs [28] No Yes - 40

RepairThemAll [10] Yes Yes No‡ 64,293

Liu et al. [36] Yes Yes Yes 1,245

Xiong et al. [59] Yes Yes Yes 139

Total 102,041

†The latest version 2.0.0 of Defects4J is considered in this study.
‡The patches are not labeled in [10]. We support the labeling effort in this

study by comparing the generated patches against the developer patches. The

2,918 patches for IntroclassJava in [10] are also excluded from our study since

IntroClassJava is a lab-built Java benchmark transformed from the C program

bugs in small student-written programming assignments from IntroClass [25].

3.3 Model input pre-processing

Samples in our datasets are patches such as the one presented in

Figure 1 extracted from the Defects4J dataset. Our investigations

with representation learning however require input data about the

buggy and patched code. A straightforward approach to derive

those inputs would be to consider the code files before and after

the patch. Unfortunately, depending on the size of the code file,

the differences could be too minimal to be captured by any simi-

larity measurement. To that end, we propose to focus on the code

fragment that appears in the patch. Thus, to represent the buggy

code fragment (cf. Figure 2), we keep all removed lines (i.e., starting

with ‘-’) as well as the patch context lines (i.e., those not starting

with either ‘-’, ‘+’ or ‘@’). Similarly, the patched code fragment (cf.

Figure 3) is represented by added lines (i.e., starting with ‘+’) as well

983

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

−−− source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
+++ source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
@@ −1795,6 +1795,6 @@ public abstract class AbstractCategoryItemRenderer

int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);

− if (dataset != null) {
+ if (dataset == null) {

return result;
}

Figure 1: Example of a patch for the Defects4J bug Chart-1.

1: a/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
2: int index = this.plot.getIndexOf(this);
3: CategoryDataset dataset = this.plot.getDataset(index);

4: if (dataset != null) {

5: return result;
6: }

Figure 2: Buggy code fragment associated to patch in Fig. 1.

1: b/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
2: int index = this.plot.getIndexOf(this);
3: CategoryDataset dataset = this.plot.getDataset(index);

4: if (dataset == null) {

5: return result;
6: }

Figure 3: Patched code fragment associated to patch in Fig. 1.

as the same context lines. Since tool support for the representation

learning techniques BERT, Doc2Vec, and CC2Vec require each input

sample to be on a single line, we flatten multi-line code fragments

into a single line.

In contrast to BERT, Doc2Vec, and CC2Vec, which can take as

input some syntax-incomplete code fragments, code2vec requires

the fragment to be fully parsable in order to extract information

on Abstract Syntax Tree paths. Since patch datasets include only

text-based diffs, code context is generally truncated and is likely

not parsable. However, as just explained, we opt to consider only

the removed/added lines to build the buggy and patched code input

data. By doing so, we substantially improved the success rate of the

JavaExtractor tool used to build the tokens in the code2vec pipeline.

3.4 Embedding models

When representation learning algorithms are applied to some train-

ing data, they produce embedding models that have learned to map

a set of code tokens in the vocabulary of the training data to vectors

of numerical values. These vectors are also referred to as embed-

dings. Figure 4 illustrates the process of embedding buggy code and

patched code for the purpose of our experiments.

The embedding models used in this work are obtained from

different sources and training scenarios.

• BERT. In the first scenario, we consider an embedding model

that initially targets natural language data, both in terms of the

learning algorithm and in terms of training data. The network

structure of BERT, however, is deep, meaning that it requires large

datasets for training the embedding model. As it is now custom

in the literature, we instead leverage a pre-trained 24-layer BERT

model, which was trained on a Wikipedia corpus.

• Doc2Vec. In the second scenario, we consider an embedding

model that is trained on code data but using a representation

learning technique that was developed for text data. To that end,

patch

Code representation

buggy code

patched code

buggy code
vector

patched code
vector

Bert, Doc2Vec or Code2Vec
embedding model

Preprocessing

Figure 4: Producing code fragment embeddings with BERT,

Doc2Vec and code2vec.

we have trained the Doc2Vec model with code data of 36,364

patches from the 5 repair benchmarks (cf. Table 1).

• code2vec. In the third scenario, we consider an embeddingmodel

that primarily targets code, both in terms of the learning algo-

rithm and in terms of training data. We use in this case a pre-

trained model of code2vec, which was trained by the authors

using ~14 million code examples from Java projects.

• CC2Vec. Finally, in the fourth scenario, we consider an embed-

ding model that was built in representation learning experiments

for code changes. However, the pre-trained model that we lever-

aged from the work of Hoang et al. [13] is embedding each patch

into a single vector. We investigate the layers and identify the

middle CNN-3D layer as the sweet spot to extract embeddings

for buggy code and patched code fragments. Figure 5 illustrates

the process.

4 EXPERIMENTS

Wepresent the experiments that we designed to answer the research

questions of our study. For each experiment, we state the objective,

overview the execution details before presenting the results.

4.1 [Similarity Measurements for Buggy and
Patched Code using Embeddings]

Objective: We investigate the capability of different learned

embeddings to capture the similarity/dissimilarity between code

fragments. The experiments are performed towards providing an-

swers for two sub-questions:

RQ-1.1 Is correct code actually similar to buggy code based on

learned embeddings?

RQ-1.2 To what extent is buggy code more similar to correctly-

patched code than to incorrectly-patched code?

Experimental Design: We perform two distinct experiments

with available datasets to answer RQ-1.1 and RQ-1.2.

[Experiment �] Using the four embedding models considered in

our study (cf. Section 3.4), we produce the embeddings for buggy

Trained CC2vec model

patch

3D CNN
layer

Lookup em
bedding

Fully connected
layer

Output
layer

buggy code
vector

patched code
vector

CC2Vec code representation

Figure 5: Extracting code fragment embeddings from

CC2Vec pre-trained model.

984

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

and patched code fragments associated to 36k patches from five

repair benchmarks shown in Table 2. In this case, the patched code

fragment represents correct code since it comes from labeled bench-

mark data (generally representing developer fix patches). Given

those embeddings (i.e., code representation vectors), we compute

the cosine similarity between the vector representing the buggy

code fragment and the vector representing the patched code frag-

ment.

Table 2: Patch datasets used for computing similarity scores

between buggy code fragments and correct code fragments.

Be
ars

Bu
gs.

jar

De
fec

ts4
J

Man
yS
Stu

Bs
4J

Qu
ixB

ug
s

To
tal

Patches 251 1,158 864 34,051 40 36,364∗

∗Due to parsing failures, code2vec embeddings are available for 21,135 patches.

[Experiment �] To compare the similarity scores of correct code

fragment vs incorrect code fragment to the buggy code, we consider

combining datasets with correct patches and datasets with incorrect

patches. Note that, all patches in our experiments are plausible since

we are focused on correctness: plausibility is straightforward to

decide based on test suites. Correct patches are provided in bench-

marks. However, incorrect patches associated to all benchmark bugs

are not available. We rely on the dataset released by Liu et al. [36]:

674 plausible but incorrect patches generated by 16 repair tools for

184 Defects4J bugs are considered from this dataset. Those 674 in-

correct patches are selected within a larger set of incorrect patches

by adding the constraint that the incorrect patch should be chang-

ing the same code location as the developer-provided patch in the

benchmark: such incorrect patch cases may indeed be the most

challenging to identify with heuristics. We propose to compare the

similarity scores between the incorrect code and buggy code associ-

ated to the dataset with the similarity scores between correct code

and buggy associated to all benchmarks, all Defects4J benchmark

data, or only the subset of Defects4J that corresponds to the 184

patches for which relevant incorrect patches are available.

Results: Figure 6 presents the boxplots of the similarity distribu-

tions with different embedding models and for samples in different

datasets. Doc2Vec and code2vec models appear to yield similarity

values that are lower than BERT and CC2Vec models.
Model

BERT

CC2Vec

code2Vec

Doc2Vec

0

20

40

60

80

100

Defects4JBugs.jarBears QuixBugsManySS

Si
m

ila
ri

ty
 (

%
)

Figure 6: Distributions of similarity scores between cor-

rect and buggy code fragments. “ManySS” stands for

“ManySStuBs4J”.

Figure 7 zooms in the boxplot region for each embedding model

experiment to overview the differences across different benchmark

99

100

D4JBjBears QBMSS

Si
m

ila
ri

ty
 (

%
)

9999999999

100100100100100100

D4JBjBears QBMSS

Si
m

ila
ri

ty
 (

%
)

70

80

90

100

D4JBjBears QBMSS

Si
m

ila
ri

ty
 (

%
)

40

60

80

100

D4JBjBears QBMSS

Si
m

ila
ri

ty
 (

%
)

(a) BERT. (b) CC2Vec.

(c) Doc2Vec. (d) code2vec.

Figure 7: Zoomed views of the distributions of similarity

scores between correct and buggy code fragments.

data. We obverse that, when embedding the patches with BERT, the

similarity distribution for the patches in Defects4J dataset is simi-

lar to Bugs.jar and Bears dataset, but is different from the dataset

ManySStBs4J andQuixBugs. TheMann-Whitney-Wilcoxon (MWW)

tests [39, 57] confirm that the similarity of median scores for De-

fects4J, Bugs.jar and Bears is indeed statistically significant. MWW

tests further confirms the statistical significance of the difference

between Defects4J and ManySStBs4J/QuixBugs scores.

Defects4J, Bugs.jar and Bears include diverse human-written

patches for a large spectrum of bugs from real-world open-source

Java projects. In contrast, ManySStuBs4J only contains patches for

single statement bugs. Quixbugs dataset is further limited by its

size and the fact that the patches are built by simply mutating the

code of small Java implementation of 40 algorithms (e.g., quicksort,

levenshtein, etc.).

While CC2Vec and Doc2Vec exhibit roughly similar patterns

with BERT (although at different scales), the experimental results

with code2vec present different patterns across datasets. Note that,

due to parsing failures of code2vec, we eventually considered only

118 Bears patches, 123 Bugs.jar patches, 46 Defects4J patches, 20,840

ManySStuBs4J patches and 8 QuixBugs. The change of dataset size

could explain the difference with the other embedding models.

� RQ1.1 � Learned representations of buggy and correct code

fragments exhibit high cosine similarity scores. Median scores

are similar for patches that are collected with similar heuristics

(e.g., in the wild patches vs single-line patches vs debugging ex-

ample patches). The pre-trained BERT natural language model

captures more similarity variations than the CC2Vec model, which

is specialized for code changes.�

In the second experiment, we further assess whether incorrectly-

patched code exhibits different similarity score distributions than

985

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

correctly-patched code. Figure 8 shows the distributions of cosine

similarity scores for correct patches (i.e., similarity between buggy

code and correct code fragments) and incorrect patches (i.e., sim-

ilarity between buggy code and incorrect code fragments). The

comparison is done with different scenarios specified in Table 3.

Figure 8: Comparison of similarity score distributions for

code fragments in incorrect and correct patches.

Table 3: Scenarios for similarity distributions comparison.

Scenario Incorrect patches Correct patches

Imbalanced-al∗ 674 incorrect patches
all correct patches from 5

benchmarks in Table 2.

Imbalanced-Defects4J by 16 APR tools [36]
all correct patches from

Defects4J.

Balanced-Defects4J for 184 Defects4J bugs
all correct patches for the 184

Defects4J bugs.

∗Except for Defects4J, there are no publicly-released incorrect patches for APR datasets.

The comparisons do not include the case of embeddings for

code2vec. Indeed, unlike the previous experiment where code2vec

was able to parse enough code fragments, for the considered 184

correct patches of Defects4J, code2vec failed to parse most of the

relevant code fragments. Hence, we focus the comparison on the

other three embedding models (pre-trained BERT, trained Doc2Vec

and pre-trained CC2Vec). Overall, we observe that the distribution

of cosine similarity scores is substantially different for correct and

incorrect code.

We observe that the similarity distributions of buggy code and

patched code from incorrect patches are significantly different from

the similarities for correct patches. The difference of median values

is confirmed to be statistically significant by an MWW test. Note

that the difference remains high for BERT, Doc2Vec and CC2Vec

whether the correct code is the counterpart of the incorrect ones

(i.e., the scenario of Balanced-Defects4J) or whether the correct

code is from a larger dataset (i.e., Imbalanced-all and Imbalanced-

Defects4J scenarios).

� RQ1.2� Learned representations of code fragments with BERT,

CC2Vec and Doc2Vec yield similarity scores that, given a buggy

code, substantially differ between correct code and incorrect code.

This result suggests that similarity score can be leveraged to dis-

criminate correct patches from incorrect patches.�

4.2 [Filtering of Incorrect Patches based on
Similarity Thresholds]

Objective: Following up on the findings related to the first re-

search question, we investigate the selection of cut-off similarity

scores to decide on which APR-generated patches are likely incor-

rect. Results from this investigation will provide insights to guide

the exploitation of code embeddings in program repair pipelines.

Experimental design: To select threshold values, we consider

the distributions of similarity scores from the above experiments

(cf. Section 4.1). Table 4 summarizes relevant statistics on the dis-

tributions on the similarity scores distribution for correct patches.

Given the differences that were exhibited with incorrect patches in

previous experiments, we use, for example, the 1st quartile value

as an inferred threshold value.

Table 4: Statistics on the distributions of similarity scores

for correct patches of Bears+Bugs.jar+Defects4J.

Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean

BERT 90.84 99.47 99.73 99.86 100 99.54

CC2Vec 99.36 99.91 99.95 99.98 100 99.93

Doc2Vec 28.49 85.80 92.60 96.10 99.89 89.19

code2vec 2.64 81.19 93.63 98.87 100 87.11

Given our previous findings that different datasets exhibit dif-

ferent similarity score distributions, we also consider inferring a

specific threshold for the QuixBugs dataset (cf. statistics in Table 5).

We do not compute any threshold based on ManySStuBs4J since it

has not yet been applied to program repair tools.

Table 5: Statistics on the distributions of similarity scores

for correct patches of QuixBugs.

Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean

BERT 95.63 99.69 99.89 99.95 99.97 99.66

CC2Vec 99.60 99.94 99.99 100 100 99.95

Doc2Vec 55.51 89.56 96.65 97.90 99.72 91.29

code2vec 81.16 98. 53 100 100 100 97.06

Our test data is constituted of 64,293 patches generated by 11

APR tools in the empirical study of Durieux et al. [10]. First, we

use the four embedding models to generate embeddings of buggy

code and patched code fragments and compute cosine similarity

scores. Second, for each bug, we rank all generated patches based

on the similarity score between the patched code and the buggy,

where we consider that the higher the score, the more likely the

correctness. Finally, to filter incorrect candidates, we consider two

experiments:

(1) Patches that lead to similarity scores that are lower to the in-

ferred threshold (i.e., 1st Quartile in previous experimental data)

will be considered as incorrect. Patches where patched code ex-

hibit higher similarity scores than the threshold are considered

likely correct.

(2) Another approach is to consider only the top-1 patches with

the highest similarity scores as correct patches. Other patches

are considered incorrect.

In all cases, we systematically validate the correctness of all

64,293 patches to have the correctness labels, for which the dataset

authors did not provide (all plausible patches having been consid-

ered as valid). First, if the file(s) modified by a patch are not the

same buggy files in the benchmark, we systematically consider

it as incorrect: with this simple scheme, 33 489 patches are found

incorrect. Second, with the same file, if the patch is not making

changes at the same code locations, we consider it to be incorrect:

26 386 patches are further tagged as incorrect with this decision

986

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

Table 6: Filtering incorrect patches by generalizing thresholds inferred from Section 4.1.Results.

Dataset # CP # IP Threshold
BERT CC2Vec Doc2Vec

+CP # -IP +Recall -Recall # +CP # -IP +Recall -Recall # +CP # -IP +Recall -Recall

Bears, Bugs.jar

and Defects4J
893 61,932

1st Qu. 57 48,846 6.4% 78.9% 797 19,499 89.2% 31.5% 794 25,192 88.9% 40.7%

Mean 49 51,783 5.5% 83.6% 789 23,738 88.4% 38.3% 771 33,218 86.3% 53.6%

QuixBugs 7 1,461
1st Qu. 4 1,387 57.1% 94.9% 4 1,198 57.1% 82.0% 7 1,226 100% 83.9%

Mean 4 1,378 57.1% 94.3% 4 1,255 57.1% 85.9% 7 1270 100% 86.9%

∗“# CP” and “# IP” stand for the number of correct and incorrect patches, respectively. “# +CP” means the number of correct patches that can be ranked upon the threshold,

while “# -IP” means the number of incorrect patches that can be filtered out by the threshold. “+Recall” and “-Recall” represent the recall of identifying correct patches

and filtering out incorrect patches, respectively.

(cf. Threats to validity in Section 5). Finally, for the remaining 4 418

plausible patches in the dataset, we manually validate correctness

by following the strict criteria enumerated by Liu et al. [36] to

enable reproducibility. Overall, we could label 900 correct patches.

The remainders are considered as incorrect.

Results: By considering the patch with the highest (top-1) simi-

larity score between the patched code and buggy code as correct,

we were able to identify a correct patch for 10% (with BERT), 9%

(with CC2Vec) and 10% (with Doc2Vec) of the bug cases. Overall we

also misclassified 96% correct patches as incorrect. However, only

1.5% of incorrect patches were misclassified as correct patches.

Given that a given bug can be fixed with several correct patches,

the top-1 criterion may not be adequate. Furthermore, this criterion

makes the assumption that a correct patch indeed exists among

the patch candidates. By using filtering thresholds inferred from

previous experiments (which do not include the test dataset in this

experiment), we can attempt to filter all incorrect patches generated

by APR tools. Filtering results presented in Table 6 show the recall

scores that can be reached. We provide experimental results when

we use 1st Quartile and Mean values of similarity scores in the

“training” set as threshold values. The threshold are also applied by

taking into account the datasets: thresholds learned on QuixBugs

benchmark are applied to generated patches for QuixBugs bugs.

� RQ2 �Building on cosine similarity scores, code fragment

embeddings can help to filter out between 31.5% with CC2Vec and

94.9% with BERT of incorrect patches. While BERT achieves the

highest recall of filtering incorrect patches, it produces embeddings

that lead to a lower recall (at 5.5%) at identifying correct patches.�

4.3 [Classification of Correct Patches with
supervised learning]

Objective: Cosine similarity between embeddings (which was

used in the previous experiments) considers every deep learned

feature as having the same weight as the others in the embedding

vector. We investigate the feasibility to infer, using machine learn-

ing, the weights that different features may present with respect

to patch correctness. We compare the prediction evaluation results

with the achievements of related approaches in the literature.

Experimental design: To perform our machine learning exper-

iments, we first require a ground-truth dataset. To that end, we

rely on labeled datasets in the literature. Since incorrect patches

generated by actual APR tools are only available for the Defects4J

bugs, we focus on labeled patches provided by two independent

teams (Liu et al. [36] and Xiong et al. [59]). Very few patches gener-

ated by the different tools are actually labeled as correct, leading

to an imbalanced dataset. To reduce the imbalance issue, we sup-

plement the dataset with developer (correct) patches as supplied in

the Defects4J benchmark. Eventually, our dataset shown in Table 7

included 1000 patches after removing duplicates to avoid data bias.

Table 7: Dataset for evaluatingML-based predictors of patch

correctness.

Correct patches Incorrect patches Total

Liu et al. [36] 137 502 639

Xiong et al. [59] 30 109 139

Defects4J (developers) [17] 356 0 356

Whole dataset 523 611 1134

Final Dataset (deduplicated) 468 532 1000

Our ground truth dataset patches are then fed to our embedding

models to produce embedding vectors. As for previous experiments,

the parsability of Defects4J patch code fragments prevented the

application of code2vec: we use pre-trainedmodels of BERT (trained

with natural language text) and CC2Vec (trained with code changes)

as well as a retrained model of Doc2Vec (trained with patches).

Since the representation learning models are applied to code

fragments inferred from patches (and not to the patch themselves),

we collect the embeddings of both buggy code fragment and patched

code fragment for each patch. Then we must merge these vectors

back into a single input vector for the classification algorithm. We

follow an approach that was demonstrated by Hoang et al. [13] in

a recent work on bug fix patch prediction: the classification model

performs best when features of patched code fragment and buggy

code fragment are crossed together. We thus propose a classification

pipeline (cf. Figure 9) where the feature extraction for a given patch

is done by applying subtraction, multiplication, cosine similarity

and euclidean similarity to capture crossed features between the

buggy code vector and the patched code vector. The resulting patch

embedding has 2*n+2 dimensions where n is the dimension of input

code fragment embeddings. The values of the dimension n for BERT,

Doc2Vec and CC2Vec are set as 1024, 64 and 64, respectively.

Feature extractor

Cc2vec

patches

buggy code
fragments

patched code
fragments

p

Preprocessing

Input

code representation learning m
ethod

Bert

Doc2vec

n

Feature crosses

n

Train &
 test

Classifiers

Logistic regression

Decision tree

Naive Bayes

Eb

Ep 2*n+2

istic regrsub

multi

cosine
Euclidian

Figure 9: Feature engineering for correctness classification.

Results: We compare the performance of different predictors

(varying the embeding models) using different learners (i.e., classifi-

cation algorithms). Results presented in Table 8 are averaged from a

5-fold cross validation setup. All classical metrics used for assessing

987

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Performance of ML patch correctness predictor

using BERT/Logistic Regression: Test set from [59].

predictors are reproted: Accuracy, Precision, Recall, F1-Measure,

Area Under Curve (AUC). Logistic Regression (LR) applied to BERT

embeddings yield the best performance measurements: 0.720 for F1

and 0.808 for AUC.

Table 8: Evaluation of Bert representation on three ML clas-

sifiers.

Classifier Embedding Acc. Prec. Recall. F1 AUC

DecisionTree

BERT 63.6 62.0 57.3 59.6 0.632

CC2Vec 69.0 66.9 68.0 67.2 0.690

Doc2Vec 60.2 57.4 57.7 57.5 0.600

Logistic regression

BERT 74.4 73.8 70.3 72.0 0.808

CC2Vec 73.9 72.5 72.0 72.0 0.788

Doc2Vec 66.3 65.3 59.9 62.3 0.707

Naive bayes

BERT 60.3 55.6 77.0 64.5 0.642

CC2Vec 58.0 65.4 22.7 28.5 0.722

Doc2Vec 66.3 69.4 49.8 57.9 0.714

� RQ3.1 � An ML classifier trained using Logistic Regression

with BERT embeddings yield very promising performance on patch

correctness prediction (F-Measure at 72.0% and AUC at 80.8%). �

[Comparison against the state of the art]. There are two

related works for patch prediction which were both evaluated on

139 patches released by Xiong et al. [59]. PATCH-SIM [59] com-

pares execution traces of patched programs to identify correctness.

ODS [63] leverages manually-crafted features to build machine

learning classifiers.

We consider the 139 patches as test set and the remainder in our

dataset (870 = 1000 − 1301) for training. Note that the 139 patches

are associated to bug cases where repair tools can generate patches.

These patches may thus be substantially different from the rest

in our dataset. Indeed our best learner (Logistic Regression with

BERT embeddings) yields an AUC of 0.765. The Receiver Operating

Characteristic (ROC) curve is presented in Figure 10.

In the validation of PATCH-SIM [59], the authors aimed for avoid-

ing to filter out any correct patches. Eventually, when guaranteeing

that no correct patch is excluded, they could still exclude 62 (56.3%)

incorrect patches. If we constrain the threshold of our predictor to

avoid misclassifying any correct patch (threshold value = 0.219),

our predictor is able to exclude up to 43 (39.4%) incorrect patches,

which represents a reasonably promising achievement since no

19 patches in the ground truth dataset by Xiong et al. [59] were duplicates (e.g.,
Patch151 ≡ Patch23).

Table 9: Comparison of incorrect patch identification be-

tween PATCH-SIM (uses dynamic information) and BERT+

LR (uses embeddings statically inferred from patches).

Ground Truth PATCH-SIM BERT + LR

Project Incorrect Correct Incorrect Correct Incorrect Correct

excluded (%) excluded excluded (%) excluded

Chart 23 3 14(60.9%) 0 16(69.6%) 0

Lang 10 5 6(54.5%) 0 1(10%) 0

Math 63 20 33(52.4%) 0 23(36.5%) 0

Time 13 2 9(69.2%) 0 3(23.1%) 0

Total 109 30 62(56.3%) 0 43(39.4%) 0

Table 10: Confusion matrix of ML predictions based on

BERT embedddings with different thresholds.

Learners AUC
Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.765

#TP 30 30 24 19 16 12 10 6 4

#TN 13 37 61 79 85 95 100 106 108

#FP 96 72 48 30 24 14 9 3 1

#FN 0 0 6 11 14 18 20 24 26

RF 0.751

#TP 30 30 29 26 20 12 4 2 0

#TN 1 1 6 32 79 102 107 108 109

#FP 108 108 103 77 30 7 2 1 0

#FN 0 0 1 4 10 18 26 28 30

Table 11: Confusion matrix of ODS predictions with differ-

ent thresholds.

Learners AUC
Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.705

#TP 27 27 27 27 27 27 27 27 27

#TN 50 50 50 50 50 51 51 52 52

#FP 60 60 60 60 60 59 59 58 58

#FN 2 2 2 2 2 2 2 2 2

RF 0.841

#TP 29 29 29 29 29 29 25 23 14

#TN 20 33 36 43 51 60 68 81 101

#FP 90 77 74 67 59 50 42 29 13

#FN 0 0 0 0 0 0 4 6 15

dynamic information is used (in contrast to PATCH-SIM). Table 9

overviews the prediction results comparison.

We also compare the predictive power of our models against that

of ODS [63], which builds on manually engineered features. We

directly compare against the results reported by the authors on the

139 test patches. While the pre-trained BERT model associated with

Logistic Regression (LR) achieves better AUC than ODS LR-based

model (0.765 vs 0.705), ODS Random Forest-based model achieves a

higher AUC at 0.841. Note however that ODS has been trained on

over 13 thousand patches (including patches for bugs associated to

the test set patch), our training dataset includes only 870 patches

(i.e., ∼1/20th of their dataset).

Tables 10 and 11 provide confusion matrices for different cut-off

thresholds of the classifiers for ODS and our BERT embeddings-

based classifiers: TP (true positives) represent correct patches that

were classified as such; TN (true negatives) represent incorrect

patches that were classified as such; FP (false positives) represent

incorrect patches that were classified as correct; and FN (false neg-

atives) represent correct patches that were classified as incorrect.

Overall, the BERT-based predictor is very sensitive to the cut-off

thresholds while ODS is less sensitive. We also note that BERT

embeddings applied to Random Forrest does not yield good perfor-

mance: decision trees are indeed known to be good for categorical

data and request large datasets for training. In our case, the data

set is small, while ODS has a training dataset that is about 20 times

988

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

larger. The hand-crafted features of ODS may also help split the

patches into categories while our deep learned features are based

on a large vocabulary of natural language text.

We observe nevertheless that LR classifiers fed with BERT em-

beddings are able to recall high numbers of incorrect patches (#TN is

high and #FP is low on threshold > 0.5). In contrast ODS consistently

recalls correct patches (however with high false positives). These

experimental results suggest that both approaches can be used in a

complementary way. In future work, we will propose an approach

that carefully merges deep learned features to hand-crafted features

towards yielded a better predictors of patch correctness.

� RQ3.2 �ML predictors trained on learned representations ap-
pear to perform slightly less well than state of the art PATCH-SIM

approach which relies on dynamic information. On the other hand,

deep code representations appear to be complementary to hand-

crafted features engineered for ODS. Overall, we recall that our

experimental evaluations are performed in a zero-shot scenario,

i.e., without fine-tuning the parameters of any of the pre-trained

models. Furthermore, the training dataset of the classifiers is an

order of magnitude smallera than the one used by most closely-

related work (i.e., ODS) and may further not be representative to

best fit the test set.�
aWe were not able to collect or reconstitute the training dataset used in ODS

to train our model.

5 DISCUSSIONS

We enumerate a few insights from our experiments with represen-

tation learning models and discuss some threats to validity.

5.1 Experimental insights

[Code-oriented embedding models may not yield the best embeddings

for training predictors.] Our experiments have revealed that the

BERT model which was pre-trained on Wikipedia is yielding the

best recall in the identification of incorrect patches. There are sev-

eral possible reasons to that: Bert implements the deepest neural

network and builds on the largest training data. Its performance sug-

gests that code-oriented embeddings should aim for being accurate

with small training datasets in order to become competitive against

BERT. While we were completing the experiments, a pre-trained

CodeBERT [11] model has been released (on April 27). In future

work, we will investigate its relevance for producing embeddings

that may yield higher performance in patch correctness prediction.

In any case, we note that CC2Vec provided the best embeddings

for yielding the best recall in identifying correct. patches (using

similarity thresholds). This suggests that future research should

investigate the value of merging different representations or com-

bining the eventual prediction probabilities to improve performance

on both identifying correct patches and excluding most incorrect

patches.

[The small sizes of the code fragments lead to similar embeddings.].

Figure 11 illustrates the different cosine similarity scores that can

be obtained for the BERT embeddings of different pairs of short

sentences. Although the sentences are semantically (dis)similar, the

cosine similarity scores are quite close. This explains why recalling

correct patches based on a similarity threshold was a failed attempt

(∼ 5% for APR-generated patches for. Defects4J+Bears+Bugs.jar

bugs). Nevertheless, experimental results demonstrated that deep

learned features were relevant for learning to discriminate.

"our", "grandpa", "has", "a",
"very", "handsome", "look"

"computer", "science",
"is", "difficult"

"his", "spouse", "is",
"lovely"

0.919 0.914 0.869

Figure 11: Close cosine similarity scores with small-sized in-

puts for BERT embedding model.

[Embeddings are most suitable when applied to simple ML algo-

rithms.] Because embeddings are yielded from neural networks,

they are actually formed by complex crossed features. When they

are fed to a complex discriminant model such as Random Forrest,

it may lead to overfitting with small datasets. Our experiments

however show that simple Logistic Regression yields the best AUC,

suggesting that this learner was able to better identifying discrimi-

nating features for the prediction task.

5.2 Threats to validity

Our empirical study carries a number of threats to validity that we

have tried to mitigate.

Threats to External Validity. There are a variety of representa-

tion learning models in the literature. A threat to validity of our

study is that we may have a selection bias by considering only

four embedding models. We have mitigated this threat by consid-

ering representative models in different scenarios (pre-trained vs

retrained, code change specific vs natural language oriented).

Another threat to validity is related to the use of Defects4J data

in evaluating the ML classifiers. This choice however was dictated

by the data available and the aim to compare against related work.

Finally, with respect to the explored models, the attention sys-

tem of CC2Vec requires some execution parameters to perform

well. Since the relevant code was not available, we use use a non-

attention version instead, potentially making CC2Vec embeddings

be under-performing. We release the artifacts for future compar-

isons by the research community.

Threats to Internal Validity. A major threat to internal validity

lies in the manual assessment heuristics that we applied to the

RepairThemAll-generated dataset. We may have misclassified some

patches due to mistakes or conservatism. This threat however holds

for all APR work that relies on manual assessment. We mitigate

this threat by following clear and reproducible decision criteria,

and by further releasing our labelled datasets for the community to

review2.

Threats to Construct Validity. For our experiment, the con-

sidered embedding models are not perfect and they may have

been under-trained for the prediction task that we envisioned. For

this reason, the results that we have reported are likely an under-

estimation of the capability of representation learning models to

2see: https://github.com/SerVal-DTF/DL4PatchCorrectness

989

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

capture discriminative features for the prediction of patch correct-

ness. Our future studies on representation learning will address

this threat by considering different re-training experiments.

6 RELATEDWORK

Analyzing Patch Correctness: To assess the performance of

fixing bugs of repair tools and approaches, checking the correctness

of patches is key, but not trivial. However, this task was largely ig-

nored or unconcerned in the community until the analysis study of

patch correctness conducted byQi et al. [46]. Thanks to their system-

atic analysis of the patches reported by three generate-and-validate

program repair systems (i.e., GenProg, RSRepair and AE), they

shown that the overwhelming majority of the generated patches

are not correct but just overfit the test inputs in the test suites of

buggy programs. In another study, Smith et al. [49] uncover that

patches generated with lower coverage test suites overfit more.

Actually, these overfitting patches often simply break under-tested

functionalities, and some of them even make the “patched” pro-

gram worse than the un-patched program. Since then, the overfit-

ting issue has been widely studied in the literature. For example,

Le et al. [24] revisit the overfitting problem in semantics-based

APR systems. In [23], they further assess the reliability of authors

and automated annotations in assessing patch correctness. They

recommend to make publicly available to the community the patch

correctness evaluations of the authors. Yang and Yang [61] explore

the difference between the runtime behavior of programs patched

with developer’s patches and those by APR-generated plausible

patches. They unveil that the majority of the APR-generated plausi-

ble patches leads to different runtime behaviors compared to correct

patches.

Predicting Patch Correctness: To predict the correctness of

patches, one of the first explored research directions relied on the

idea of augmenting test inputs, i.e., more tests need to be proposed.

Yang et al. [62] design a framework to detect overfitting patches.

This framework leverages fuzz strategies on existing test cases

in order to automatically generate new test inputs. In addition, it

leverages additional oracles (i.e., memory-safety oracles) to improve

the validation of APR-generated patches. In a contemporary study,

Xin and Reiss [58] also explored to generate new test inputs, with

the syntactic differences between the buggy code and its patched

code, for validating the correctness of APR-generated patches. As

complemented by Xiong et al. [59], they proposed to assess the

patch correctness of APR systems by leveraging the automated

generation of new test cases and measuring behavior similarity of

the failing tests on buggy and patched programs.

Through an empirical investigation, Yu et al. [66] summarized

two common overfitting issues: incomplete fixing and regression

introduction. To assist alleviating the overfitting issue for synthesis-

based APR systems, they further proposed UnsatGuided that

relies on additional generated test cases to strengthen patch synthe-

sis, and thus reduce the generation of incorrect overfitting patches.

Predicting patch correctness with thanks to an augmented set of

test cases heavily relies on the quality of tests. In practice, tests with

high coverage might be unavailable [63]. In our paper, we do not

rely on any new test cases to assess patch correctness, but leverage

representation learning techniques to build representation vectors

for buggy and patched code of APR-generated patches.

To predict overfitting patches yielded by APR tools, Ye et al. [63]

propose ODS, an overfitting detection system. ODS first statically

extracts 4,199 code features at the AST level from the buggy code

and generated patch code of APR-generated patches. Those features

are fed into three machine learning algorithms (logistic regression,

KNN, and random forest) to learn an ensemble probabilistic model

for classifying and ranking potentially overfitting patches. To evalu-

ate the performance of ODS, the authors considered 19,253 training

samples and 713 testing samples from the Durieux et al. empir-

ical study [10]. With these settings, ODS is capable of detecting

57% of overfitting patches. The ODS approach relates to our study

since both leverage machine learning and static features. However,

ODS only relies on manually identified features which may not

generalize to other programming languages or even other datasets.

In a recent work, Csuvik et al. [8] exploit the textual and struc-

tural similarity between the buggy code and the APR-patched code

with two representation learningmodels (BERT [9] andDoc2Vec [22])

by considering three patch code representation (i.e., source code,

abstract syntax tree and identifiers). Their results show that the

source code representation is likely to be more effective in correct

patch identification than the other two representations, and the

similarity-based patch validation can filter out incorrect patches

for APR tools. However, to assess the performance of the approach,

only 64 patches from QuixBugs [64] have been considered (includ-

ing 14 in-the-lab bugs). This low number of considered patches

raises questions about the generalization of the approach for fixing

bugs in the wild. Moreover, unlike our study, new representation

learning models (code2vec [3] and CC2Vec [13]) dedicated to code

representation have not been exploited.

RepresentationLearning for ProgramRepair Tasks: In the

literature, representation learning techniques have been widely ex-

plored to boost program repair tasks. Long and Rinard explored

the topic of learning correct code for patch generation [37]. Their

approach learns code transformation for three kinds of bugs from

their related human-written patches. After mining the most recent

100 bug-fixing commits from each of the 500 most popular Java

projects, Soto and Le Goues [50] have built a probabilistic model

to predict bug fixes for program repair. To identify stable Linux

patches, Hoang et al. [14] proposed a hierarchical deep learning-

based method with features extracted from both commit messages

and commit code. Liu et al. [30] and Bader et al. [4] proposed to

learn recurring fix patterns from human-written patches and sug-

gest fixes. Our paper is not aiming at proposing a new automated

patch generation approach. We indeed rather focus on assessing

representation learning techniques for predicting correctness of

patches generated by program repair tools.

7 CONCLUSION

In this paper, we investigated the feasibility of statically predicting

patch correctness by leveraging representation learning models

and supervised learning algorithms. The objective is to provide

insights for the APR research community towards improving the

quality of repair candidates generated by APR tools. To that end,

we, first investigated the use of different distributed representation

990

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

learning to capture the similarity/dissimilarity between buggy and

patched code fragments. These experiments gave similarity scores

that substantially differ for across embedding models such as BERT,

Doc2Vec, code2vec and CC2Vec. Building on these results and in

order to guide the exploitation of code embeddings in program

repair pipelines, we investigated in subsequent experiments the

selection of cut-off similarity scores to decide which APR-generated

patches are likely incorrect. This allowed us to filter out between

31.5% and 94.9% incorrect patches based on brute cosine similarity

scores. Finally, we investigated the discriminative power of the deep

learned features by training machine learning classifiers to predict

correct Patches. DecisionTree, Logistic Regression and Naive Bayes

are tried with code embeddings from BERT, Doc2Vec and CC2Vec.

Logistic Regression with BERT embeddings yielded very promising

performance on patch correctness prediction with metrics like F-

Measure at 0.72% and AUC at 0.8% on a labeled deduplicated dataset

of 1000 patches. We further showed that the performance of these

models on static features is promising when comparing against

the state of the art (PATCH-SIM [59]), which uses dynamic exe-

cution traces. Experimental results suggests that the deep learned

features can be complementary to hand-crafted features (such as

those engineered by ODS [63]).

Availability.All artifacts of this study are available in the following

public repository:

https://github.com/SerVal-DTF/DL4PatchCorrectness

ACKNOWLEDGEMENTS

This work was mainly supported by the Luxembourg Finds National

de la Recherche (FNR) under Project CHARACTERIZE C17/IS/11693

861. This work was also partially supported by the Project 1015-

YAH20102, the National Natural Science Foundation of China (Grant

No.61802180), the Natural Science Foundation of Jiangsu Province

(Grant No.BK20180421), the National Cryptography Development

Fund (Grant No.MMJJ20180105) and the Fundamental Research

Funds for the Central Universities (Grant No.NE2018106).

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2014.

Learning natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 281–293.
https://doi.org/10.1145/2635868.2635883

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.
2018. A Survey of Machine Learning for Big Code and Naturalness. Comput.
Surveys 51, 4 (2018), 81:1–81:37. https://doi.org/10.1145/3212695

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40:1–40:29. https://doi.org/10.1145/3290353

[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 159:1–159:27. https://doi.org/10.1145/3360585

[5] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica
Sarro. 2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
306–317. https://doi.org/10.1145/2635868.2635898

[6] Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang. 2017.
Testing and Verification of Compilers (Dagstuhl Seminar 17502). Dagstuhl Reports
7, 12 (2017), 50–65. https://doi.org/10.4230/DagRep.7.12.50

[7] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java
Classes with code2vec: Improvements from Variable Obfuscation. In Proceedings
of the 17th Mining Software Repositories. ACM.

[8] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. 2020. Utilizing
Source Code Embeddings to Identify Correct Patches. In Proceedings of the 2nd
International Workshop on Intelligent Bug Fixing. IEEE, 18–25. https://doi.org/10.
1109/IBF50092.2020.9034714

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 4171–4186. https:
//doi.org/10.18653/v1/n19-1423

[10] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 302–313. https://doi.org/10.1145/
3338906.3338911

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. arXiv preprint
arXiv:2002.08155 (2020). https://arxiv.org/abs/2002.08155

[12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In Proceedings of the 34th Inter-
national Conference on Software Engineering. IEEE, 837–847. https://doi.org/10.
1109/ICSE.2012.6227135

[13] Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering. ACM, 518–529. https://doi.org/10.
1145/3377811.3380361

[14] Thong Hoang, Julia Lawall, Yuan Tian, Richard Jayadi Oentaryo, and David Lo.
2019. PatchNet: Hierarchical Deep Learning-Based Stable Patch Identification for
the Linux Kernel. CoRR abs/1911.03576 (2019). http://arxiv.org/abs/1911.03576

[15] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
Program Transformations From Singular Examples via Big Code. In Proceedings
of the 34th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 255–266. https://doi.org/10.1109/ASE.2019.00033

[16] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 298–309. https://doi.org/10.1145/3213846.3213871

[17] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 23rd International Symposium on Software Testing and Analysis. ACM,
437–440. https://doi.org/10.1145/2610384.2628055

[18] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the
Generalizability of Code2vec Token Embeddings. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering. IEEE,
1–12. https://doi.org/10.1109/ASE.2019.00011

[19] Rafael-Michael Karampatsis and Charles A. Sutton. 2020. How Often Do Single-
Statement Bugs Occur? The ManySStuBs4J Dataset. In Proceedings of the 17th
Mining Software Repositories. IEEE. http://arxiv.org/abs/1905.13334

[20] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empirical Software Engineering 25, 3
(2020), 1980–2024. https://doi.org/10.1007/s10664-019-09780-z

[21] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug Report driven Program
Repair. In Proceedings of the 27the ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
314–325. https://doi.org/10.1145/3338906.3338935

[22] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proceedings of the 31st International Conference on Machine
Learning. JMLR.org, 1188–1196. http://proceedings.mlr.press/v32/le14.html

[23] Xuan-Bach D Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina
Pasareanu. 2019. On reliability of patch correctness assessment. In Proceedings of
the 41st International Conference on Software Engineering. IEEE, 524–535. https:
//doi.org/10.1109/ICSE.2019.00064

[24] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23, 5 (2018), 3007–3033. https://doi.org/10.1007/s10664-017-9577-2

[25] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256. https://doi.org/10.1109/TSE.
2015.2454513

[26] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. IEEE Transactions on
Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[27] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (2019), 56–65. https://doi.org/10.1145/
3318162

[28] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey

991

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. ACM, 55–56. https://doi.org/10.1145/3135932.3135941

[29] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In Proceedings of the 41st International Conference on
Software Engineering. IEEE, 1–12. https://doi.org/10.1109/ICSE.2019.00019

[30] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon.
2018. Mining fix patterns for findbugs violations. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2884955

[31] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves
Le Traon. 2018. A closer look at real-world patches. In Proceedings of the 34th
International Conference on Software Maintenance and Evolution. IEEE, 275–286.
https://doi.org/10.1109/ICSME.2018.00037

[32] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You cannot fix what you cannot find! an investigation of
fault localization bias in benchmarking automated program repair systems. In Pro-
ceedings of the 12th IEEE International Conference on Software Testing, Verification
and Validation. IEEE, 102–113. https://doi.org/10.1109/ICST.2019.00020

[33] Kui Liu, Anil Koyuncu, DongsunKim, and Tegawendé F Bissyandé. 2019. AVATAR:
Fixing semantic bugs with fix patterns of static analysis violations. In Proceedings
of the 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 456–467. https://doi.org/10.1109/SANER.2019.8667970

[34] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
31–42. https://doi.org/10.1145/3293882.3330577

[35] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live search of fix ingredients for automated program repair. In
Proceedings of the 25th Asia-Pacific Software Engineering Conference ERA Track.
IEEE, 658–662. https://doi.org/10.1109/APSEC.2018.00085

[36] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the Efficiency of Test Suite based Program Repair: A Systematic Assessment
of 16 Automated Repair Systems for Java Programs. In Proceedings of the 42nd
International Conference on Software Engineering. ACM, 625–627. https://doi.org/
10.1145/3377811.3380338

[37] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Vol. 51. ACM, 298–312. https://doi.org/
10.1145/2837614.2837617

[38] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
BEARS: An Extensible Java Bug Benchmark for Automatic Program Repair Stud-
ies. In Proceedings of the 26th International Conference on Software Analysis, Evo-
lution and Reengineering. IEEE, 468–478. https://doi.org/10.1109/SANER.2019.
8667991

[39] Henry B Mann and Donald R. Whitney. 1947. On a Test of Whether One of
Two Random Variables Is Stochastically Larger than the Other. The Annals
of Mathematical Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/
1177730491

[40] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205. https://doi.org/10.1007/s10664-013-9282-8

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[42] Martin Monperrus. 2018. Automatic software repair: A bibliography. Comput.
Surveys 51, 1 (2018), 17:1–17:24. https://doi.org/10.1145/3105906

[43] Martin Monperrus. 2018. The living review on automated program repair. In
HAL/archives-ouvertes. fr, Technical Report.

[44] Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Mak-
ishima. 2019. A machine learning approach to detection of JavaScript-based
attacks using AST features and paragraph vectors. Applied Soft Computing 84
(2019). https://doi.org/10.1016/j.asoc.2019.105721

[45] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The strength of random search on automated program repair. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 254–265.
https://doi.org/10.1145/2568225.2568254

[46] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 24th International Symposium on Software Testing
and Analysis. ACM, 24–36. https://doi.org/10.1145/2771783.2771791

[47] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018.
Bugs.jar: A large-scale, diverse dataset of real-world java bugs. In Proceedings
of the 15th IEEE/ACM International Conference on Mining Software Repositories.
ACM, 10–13. https://doi.org/10.1145/3196398.3196473

[48] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. 2019. Harnessing evolution
for multi-hunk program repair. In Proceedings of the 41st International Conference
on Software Engineering. IEEE, 13–24. https://doi.org/10.1109/ICSE.2019.00020

[49] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering. ACM, 532–543.
https://doi.org/10.1145/2786805.2786825

[50] Mauricio Soto and Claire Le Goues. 2018. Using a probabilistic model to predict
bug fixes. In Proceedings of the 25th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 221–231. https://doi.org/10.1109/SANER.2018.
8330211

[51] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering. ACM, 297–308. https://doi.org/10.1145/2884781.2884804

[52] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far are We?. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. ACM.

[53] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source Code.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, 3034–3040. https://doi.org/10.24963/ijcai.2017/423

[54] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 356–366. https://doi.org/10.1109/ASE.2013.6693094

[55] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE, 364–374. https:
//doi.org/10.1109/ICSE.2009.5070536

[56] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering. ACM, 1–11.
https://doi.org/10.1145/3180155.3180233

[57] F. Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[58] Qi Xin and Steven P Reiss. 2017. Identifying test-suite-overfitted patches
through test case generation. In Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ACM, 226–236. https:
//doi.org/10.1145/3092703.3092718

[59] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering. ACM, 789–799. https:
//doi.org/10.1145/3183519.3183540

[60] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings
of the 39th IEEE/ACM International Conference on Software Engineering. IEEE,
416–426. https://doi.org/10.1109/ICSE.2017.45

[61] Bo Yang and Jinqiu Yang. 2020. Exploring the Differences between Plausible and
Correct Patches at Fine-Grained Level. In Proceedings of the 2nd International
Workshop on Intelligent Bug Fixing. IEEE, 1–8. https://doi.org/10.1109/IBF50092.
2020.9034821

[62] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases
for better automated program repair. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 831–841. https://doi.org/10.1145/
3106237.3106274

[63] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019.
Automated Classification of Overfitting Patches with Statically Extracted Code
Features. CoRR abs/1910.12057 (2019). http://arxiv.org/abs/1910.12057

[64] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A
Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark.
In Proceedings of the 1st International Workshop on Intelligent Bug Fixing. IEEE,
1–10. https://doi.org/10.1109/IBF.2019.8665475

[65] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI, 1145–1152.
https://doi.org/10.1609/aaai.v34i01.5466

[66] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2019. Alleviating patch overfitting with automatic test generation:
a study of feasibility and effectiveness for the Nopol repair system. Empirical
Software Engineering 24, 1 (2019), 33–67. https://doi.org/10.1007/s10664-018-
9619-4

[67] Shufan Zhou, Beijun Shen, and Hao Zhong. 2019. Lancer: Your Code Tell Me
What You Need. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 1202–1205. https://doi.org/10.1109/ASE.
2019.00137

992

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 08,2021 at 02:25:44 UTC from IEEE Xplore. Restrictions apply.

